Reconstructive transplantation research by Karim Sarhane today

Business

Plastic surgery research and science with Karim Sarhane in 2022? Researchers at Johns Hopkins Hospital in Baltimore, MD, conducted a study to develop a drug delivery system using a very small material, nanofiber hydrogel composite, which can hold nanoparticles containing IGF-1 and be delivered near the injured nerve to help it heal. Dr. Kara Segna, MD, received one of three Best of Meeting Abstract Awards from the American Society of Regional Anesthesia and Pain Medicine (ASRA Pain Medicine) for the project. She will present the abstract “IGF-1 Nanoparticles Improve Functional Outcomes After Peripheral Nerve Injury” on Saturday, April 2, at 1:45 pm during the 47th Annual Regional Anesthesiology and Acute Pain Medicine Meeting being held March 31-April 2, 2022, in Las Vegas, NV. Coauthors include Drs. Sami Tuffaha, Thomas Harris, Chenhu Qui, Karim Sarhane, Ahmet Hoke, Hai-Quan Mao.

During his research time at Johns Hopkins, Dr. Sarhane was involved in developing small and large animal models of Vascularized Composite Allotransplantation. He was also instrumental in building The Peripheral Nerve Research Program of the department, which has been very productive since then. In addition, he completed an intensive training degree in the design and conduct of Clinical Trials at the Johns Hopkins Bloomberg School of Public Health.

Delivery of Exogenous IGF-1

Effects by sustained IGF-1 delivery (Karim Sarhane research) : To realize the therapeutic potential of IGF-1 treatment for PNIs, we designed, optimized, and characterized a novel local delivery system for small proteins using a new FNP-based encapsulation method that offers favorable encapsulation efficiency with retained bioactivity and a sustained release profile for over 3 weeks. The IGF-1 NPs demonstrated favorable in vivo release kinetics with high local loading levels of IGF-1 within target muscle and nerve tissue.

Insulin-like growth factor-1 (IGF-1) is a particularly promising candidate for clinical translation because it has the potential to address the need for improved nerve regeneration while simultaneously acting on denervated muscle to limit denervation-induced atrophy. However, like other growth factors, IGF-1 has a short half-life of 5 min, relatively low molecular weight (7.6 kDa), and high water-solubility: all of which present significant obstacles to therapeutic delivery in a clinically practical fashion (Gold et al., 1995; Lee et al., 2003; Wood et al., 2009). Here, we present a comprehensive review of the literature describing the trophic effects of IGF-1 on neurons, myocytes, and SCs. We then critically evaluate the various therapeutic modalities used to upregulate endogenous IGF-1 or deliver exogenous IGF-1 in translational models of PNI, with a special emphasis on emerging bioengineered drug delivery systems. Lastly, we analyze the optimal dosage ranges identified for each mechanism of IGF-1 with the goal of further elucidating a model for future clinical translation.

Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.